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ABSTRACT: Polypyrrole coatings were formed on stainless steel working electrodes in
aqueous oxalic acid solution. The rate of formation of polypyrrole coatings on stainless
steel increased proportionately with the current density but increased slightly with
increased pyrrole concentration. Increasing oxalic acid concentration also had no sig-
nificant change in the polymerization rate. The electropolymerization potential of pyr-
role decreased significantly from 1.5 to 0.8 V versus SCE when the working electrode
was polished. The polymerization potential, Ep , of pyrrole, increased however, with
increased current density and decreased exponentially with the initial monomer and
electrolyte concentration, respectively. q 1997 John Wiley & Sons, Inc. J Appl Polym Sci 66:
2433–2440, 1997
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INTRODUCTION and corrosion-resistant amine–sulfur copolymer
coatings have been formed on steel by electroco-
polymerization of aniline and ammonium sul-Electropolymerization is used in a variety of ap-
fide.15 Both insulating and conductive polymerplications, including the formation of polymers in
coatings have been electropolymerized onto a va-solution,1,2 the modification of graphite fibers,3–6

riety of substrates16–20 with excellent throwingand the formation of in situ matrix composites.7–10

power (uniform coating of irregular and complexIt is presently being proposed as a technique for
shapes).forming new materials and novel microstruc-

Corrosion takes place when two or more elec-tures.11 The formation of insulating and highly
trochemical reactions [eqs. (1) and (2)] occur oncrosslinked polymer coatings on steel by partial
a metal surface, as follows.electropolymerization of o-allyl phenol and allyl

amine on steel was reported.13 Their coatings
O2 / 2H2O / 4e0 r 4OH0 (0.4 V) (1)showed very good corrosion resistance. One of the

approaches to protect steel against oxidation and (reduction of oxygen)
corrosion is the application of polymeric coatings
that are capable of inhibiting the oxidation of M r Mn/ / ne0 (2)
steel. Polymer coatings derived from allyl aro-
matic amines were shown to be very effective in- (oxidation of metal)
hibitors for the oxidation of iron.14 Highly stable Corrosion can be predicted from the following

equation
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Figure 3 Dependence of the weight of polypyrroleFigure 1 Potential–time curves for electropolymeri-
formed onto stainless steel on the current density.zation of pyrrole onto nonpolished (top) and polished

(bottom) stainless steel (Cd Å 2.25 mA cm02) .

Prevention of corrosion can be achieved by
where n is the number of electrons, F is the Fara- applying passive nonsoluble film on the substrate,
day’s constant, Eo is the standard cell potential, minimizing the entry of oxygen and water to the
and K is the equilibrium constant. metal–film interface and keeping the oxidation

The equilibrium potential E is related to the power of the metal as low as possible.21 The corro-
standard potential Eo by the Nernst equation: sion resistance of stainless steel in formic acid

and oxalic acid solutions was investigated by Sek-
ine and Momoi.22,23 They showed that the room

E Å Eo /
RT
nF

ln[Mn/ ] (4) temperature corrosion resistance of stainless steel
SUS 329J1 and SS 41 was very good. However,
the corrosion resistance of these materials in boil-
ing formic or oxalic acid was poor and decreased
with increased acid concentration.22,23 The forma-
tion of free-standing polypyrrole films on stainless
steel is of interest because of the low cost of the
substrate relative to the conventional platinum
electrodes. Judiciously choosing the process vari-
ables, strongly adherent polypyrrole films can be
formed on stainless steel. The corrosion perfor-
mance of such coated substrates can be compared
with the control. The need for a low-cost and an
environmentally friendly metal protection tech-
nique has stirred renewed interest in research in
this field.

Several investigators have studied the kinetics
of electropolymerization of pyrrole on plati-
num.24–28 Saveant et al. reported that radical cat-
ions coupling, rather than neutral radicals cou-
pling, occurred during the electropolymerization

Figure 2 Potential–time curve for electropolymeriza- of pyrrole.24 The dependence of the rate of potenti-
tion of pyrrole onto stainless steel as a function of cur-

ostatic polymerization of pyrrole on the reactionrent density and time, showing no induction time.
variables, such as initial pyrrole concentration
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Table I Variation of the Rate of Electropolymerization of Pyrrole
with Current Density

Applied Current Electropolymerization Electropolymerization
Current Density Potential rate

(mA) (mA/cm2) (V versus SCE) (mg cm02 ks01)

10 1.13 0.67 0.25
20 2.25 0.72 0.59
40 4.50 1.35 1.24
70 7.88 2.40 2.18

and electrolyte concentration, was determined by ization potential and the rate of formation of
polypyrrole on stainless steel. In a future article,Otero and coworkers.25,26 The dependence of the

rate of formation of polypyrrole (on platinum elec- the corrosion resistance of the polypyrrole-coated
stainless steel will be evaluated and comparedtrode) on perchlorate (electrolyte) concentration

and pyrrole concentration was found to be 0.5, with that of polypyrrole-modified low-carbon
steel.respectively, in acetonitrile. However, the order

of the reaction with respect to perchlorate in-
creased to 0.8 in water. Iroh and Wood also stud-
ied the efficiency and kinetics of aqueous potenti- EXPERIMENTAL
ostatic electropolymerization of pyrrole on carbon
fibers.27,28 It was shown that the rate of electropo- Pyrrole (98%) and reagent-grade oxalic acid were
lymerization of pyrrole increased with pyrrole purchased from Aldrich Chemical Company, Inc.
concentration, toluene sulfonate concentration Tetrachloroethylene and methanol were also pur-
and applied voltage raised to a power of 0.8–1.0, chased from Aldrich Chemical Company. The re-
0.8, and 0.9–1.2, respectively,27 i.e., Rp a [M]0.8– agents were dissolved in deionized water pre-
1.0 [SO3Ph]0.8 , and [EPa]0.9–1.2 . They showed that pared in our department.
the efficiency of potentiostatic polymerization of The working electrode is an 0.46 mm thick 304
pyrrole increased with pyrrole concentration and
decreased with applied voltage.28

In this article, we report the effect of electro-
chemical process variables on the electropolymer-

Figure 5 Potential–time curve for electropolymeriza-
tion of pyrrole onto stainless steel as a function of initial
pyrrole concentration and time, showing no inductionFigure 4 Determination of the current density expo-

nent. time.
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Table II Variation of the Rate of Electropolymerization of Pyrrole
with Pyrrole Concentration

Electropolymerization Electropolymerization
[PY] [OA] Potential Rate
(M) (M) (V versus SCE) (mg cm02 ks01)

0.1 0.1 0.76 0.51
0.25 0.1 0.72 0.57
0.5 0.1 0.71 0.69
0.8 0.1 0.68 0.70

stainless steel panel (2B finish) purchased from and dried at 657C in a vacuum oven to constant
weight. The weight of the coatings was deter-Copper Brass Sales Inc. The working electrode

was degreased with tetrachloroethylene for about mined as the difference between the coated and
noncoated steel (control) .60 min prior to electrochemical polymerization.

The counter electrodes comprised of two titanium The infrared (IR) specimens were prepared by
mixing a small quantity of the coatings with IR-alloy plates. Saturated Calomel elelectrode

(SCE), manufactured by Corning Company, was grade potassium bromide (KBr) powder and sub-
sequent pressing of the mixture into a clear pellet.used as reference electrode. Galvanostatic electro-

polymerization of pyrrole was performed by an Transmission IR spectroscopy was carried out us-
ing a Bio-Rad FTS-40 spectrophotometer. Ele-EG&G Princeton Applied Research Potentiostat/

Galvanostat Model 273A. mental analysis of the coatings extracted from
coated steel was performed by the Galbraith Lab-Electrochemical formation of polypyrrole on

stainless steel was carried out in a one-compart- oratories, Inc., Knoxville, Tennessee.
ment polypropylene cell. The current densities
used in this study ranged from 1.13 to 7.88 mA

RESULTS AND DISCUSSIONcm02 . The initial electrolyte concentration was
varied from 0.05 to 0.4M, while pyrrole concentra-

Effect of Current Densitytion was varied from 0.1 to 0.8M. Electropolymer-
ization time was varied between 300 and 1800 s. The concentration of pyrrole and oxalic acid were

The coated substrate was rinsed with methanol maintained constant at 0.25 and 0.1M, respec-

Figure 7 Dependence of the weight of polypyrroleFigure 6 Variation of electropolymerization potential
with initial pyrrole concentration. formed onto stainless steel on pyrrole concentration.
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Figure 10 Variation of electropolymerization poten-Figure 8 Determination of monomer concentration
tial with electrolyte concentration.exponent.

potential of pyrrole was maintained constant at
tively, and the current density was varied from Ep° 0.8 V. However, when the stainless steel was
1.13 to 7.88 mA cm02 . not polished, the electropolymerization potential

Figure 1 shows the dependence of the poten- of pyrrole became unsteady and increased sharply
tial–time curves of pyrrole on stainless steel at to Ep Å 1.5 V.
2.25 mA cm02 , on the surface treatment of the The electropolymerization potential of pyrrole
substrate. When the stainless steel was polished increased with the current density, and the shape
with abrasive paper, the electropolymerization of the potential–time curves varied with the cur-

rent density (Fig. 2). Below 2.25 mA cm02 , the
electropolymerization potential of pyrrole re-
mained steady at 0.8 V versus SCE during poly-
merization. Significant increase in the electro-
polymerization potential of pyrrole to 1.5 V versus
SCE occurred when the current density was
raised to 4.50 mA cm02 . The electropolymeriza-
tion potential increased with time and attained a
value of 1.35 V versus SCE in 1200 s. A further
increase in the current density to 7.88 mA cm02

resulted in a time-dependent increase in the elec-
tropolymerization potential for 700 s, after which
it remained at 2.40 V versus SCE (Fig. 2).

Figure 3 shows the dependence of the weight
of polypyrrole coatings on the current density and
electropolymerization time. The weight of the
coatings increased proportionately with current
density and time. The rate of electropolymeriza-
tion of pyrrole was determined from the slope of
the weight of coating–time curves (Fig. 3). The
rate of electropolymerization increased with theFigure 9 Potential–time curve for electropolymeriza-
current density, as shown in Table I. Increasingtion of pyrrole onto stainless steel as a function of elec-
the current density from 0.56 to 7.78 mA cm02trolyte concentration and time, showing no induction

time. resulted in an increase in the rate of polymeriza-
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Table III Variation of the Rate of Electropolymerization of Pyrrole
with Electrolyte Concentration

Electropolymerization Electropolymerization
[PY] [OA] Potential Rate
(M) (M) (V Versus SCE) (mg cm02 ks01)

0.5 0.05 0.74 0.70
0.5 0.1 0.71 0.69
0.5 0.2 0.65 0.67
0.5 0.4 0.63 0.70

tion from 0.25 to 2.18 mg cm02 ks01 . The depen- was effective in preventing the dissolution of iron.
The electropolymerization potentials decreaseddence of the rate of formation of polypyrrole on

stainless steel on the current density was deter- exponentially (about 11% decrease; Table II) with
the increased pyrrole concentration (700% in-mined from the Ln rate versus Ln Cd plot (Fig.

4) to be 1.12 [Rp a [Cd]1.12] , indicating a first- crease; Fig. 6) due to increased conductivity of
the PPy–C2O4 film. Recall that increased currentorder process.
density caused a proportionate increase in the po-
lymerization potential and weight of polypyrrole

Effect of Monomer Concentration coatings. The dependence of the weight of polypyr-
role on the initial pyrrole concentration is shownThe concentration of oxalic acid and current den-

sity were kept constant at 0.1M and 2.25 mA on Figure 7. Increasing the pyrrole concentration
results in a moderate increase in the weight ofcm02 , respectively, while the concentration of pyr-

role was varied from 0.1 to 0.8M. Figure 5 shows polypyrrole formed. For instance, increasing the
pyrrole concentration from 0.1 to 0.8M (700% in-the electropolymerization potential–time curve

as a function of initial pyrrole concentration and crease) resulted in an increase in the weight of
coatings from 2.6 to 4.8 mg (85% increase) aftertime. The potential–time curve rose to a maxi-

mum value at t Ç 0 s, after which it remains 10 min of electropolymerization. The rate of poly-
merization was determined from the slope of theinvariant with time. There was no induction pe-

riod, indicating that the chromium oxide layer weight of coatings versus time curve and pre-
sented as a function of pyrrole concentration (Ta-
ble II) . The rate of electropolymerization of pyr-
role increased with pyrrole concentration (Table
II) . The order of the electropolymerization with
respect to pyrrole concentration was determined
from the slope of the Ln rate of weight gain versus
Ln [M] plot (Fig. 8) as 0.22 [Rp a [PY]0.22] .

Effect of Electrolyte Concentration

The pyrrole concentration and current density
were kept constant at 0.5M and 2.25 mA cm02 ,

Table IV Elemental Composition of the
Polypyrrole Coatings

Composition
Elements (%)

C 60.21
H 3.16
N 16.71

Figure 11 Dependence of the weight of polypyrrole S 16.08
formed onto stainless steel on oxalic acid concentration.
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Figure 12 Infrared spectra of pyrrole (top) and polypyrrole–oxalate coatings formed
on stainless steel (bottom).

respectively. The concentration of oxalic acid was Elemental Composition and Analysis
of the Coatingsvaried from 0.05 to 0.4M. Figures 9 and 10 shows

the potential–time curve for electropolymerization
The elemental composition of the polypyrrole oxa-of pyrrole as a function of oxalic acid concentration.
late coatings formed on stainless steel is shownThere was no induction time for polymerization of
in Table IV. Elemental analysis shows the pres-pyrrole onto stainless steel (Fig. 9). The steady-
ence of oxygen in the coatings and indicates thatstate polymerization potential decreased (15% de-
the hydrogen oxalate counterion is incorporatedcrease) with electrolyte concentration (700% in-
into the polypyrrole film. The mole ratio of pyrrolecrease; Table III) due to increased conductivity of
to the hydrogen oxalate ion in the film was deter-the PPy-C2O4 layer. Generally, the electropolymer-
mined to be Ç 5 : 1.ization potential decreases exponentially with the

Fourier transform IR (FTIR) spectra of theincreasing electrolyte concentration (Fig. 10). The
polypyrrole coatings extracted from stainless steelvariation of the weight of polypyrrole coatings with
show the characteristic IR peaks associated withelectrolyte concentration is shown in Figure 11.
pyrrole and the oxalate counterion. Figure 12The amount of polypyrrole formed per unit of time
shows the IR spectra for pyrrole (Fig. 12, top) andis about 0.7 mg cm02 ks01, irrespective of the oxalic
that for polypyrrole coatings formed in oxalic acidacid concentration (Table III), indicating a zero-
solution (Fig. 12, bottom). The broad peak oc-order reaction with respect to the electrolyte con-

centration (Rpa[OA]0). curring at 3200–3500 cm01 corresponds to the
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